
More about Linux containers

OWASP Poland, Kraków, 2019-02-28

Maciej Lasyk

$ whois maciej.lasyk.info
● Backend & automation & platform engineer
● Cloud architect
● Security / networking / performance junkie
● Working @Codewise
● https://github.com/docent-net/
● https://maciej.lasyk.info
● https://dlugodystansowy.pl

https://github.com/docent-net/
https://maciej.lasyk.info
https://dlugodystansowy.pl

Linux containers?
● Used for process containment
● Linux namespaces for providing users/FS/others view
● Cgroups v1/v2 for resources management
● Linux LSMs for sealing security holes
● By design not created for providing additional security layer
● Some storage copy-on-write magic (not needed btw at all)
● Quo-vadis containers: https://www.youtube.com/watch?v=_GSLj-c_LMI

https://www.youtube.com/watch?v=_GSLj-c_LMI

Docker architecture

Docker architecture
● Binary client ($ docker)
● REST API on docker.sock by default
● ...booring? Not rly
● $ docker run --privileged -v /:/host:rw
● (unless SELinux which by default denies socket access)

Docker security considerations
● docker run --user foo

○ executes the process in the container as non - root
○ dockerd, containerd, and runc still running as root

Docker security considerations
● docker run --user foo

○ executes the process in the container as non - root
○ dockerd, containerd, and runc still running as root

● USER in Dockerfile
○ same as above
○ you can't run dnf/yum/apt-get install whatever

Docker security considerations
● docker run --user foo

○ executes the process in the container as non - root
○ dockerd, containerd, and runc still running as root

● USER in Dockerfile
○ same as above
○ you can't run dnf/yum/apt-get install whatever

● usermod -aG docker foo
○ allows non - root user to connect to docker.sock
○ remember docker run --privileged -v /:/host - DON'T

Docker - what are privileged containers?
● Basically Linux capabilities unlimited
● See man 7 capabilities
● Try: --cap-drop=ALL
● Read: runtime-privilege-and-linux-capabilities

https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

Docker - rootless considerations
● https://docs.docker.com/engine/security/userns-remap/
● dockerd --userns-remap

○ executes containers as non - root (dockremap) using user namespaces
○ most similar to rootless, but still needs dockerd, containerd, runc to run from root

https://docs.docker.com/engine/security/userns-remap/

Rootless finally in Docker?
● Original issue: https://github.com/moby/moby/pull/38050
● https://engineering.docker.com/2019/02/experimenting-with-rootless-docker/
● Downsides:

○ w/out cgroups (so no resource management)
○ w/out apparmor and SELinux
○ w/out overlay networks
○ w/out ports exposing directly - needs socat
○ On Ubuntu overlayFS, rest VFS which is no good for production

● So this is an experiment

https://github.com/moby/moby/pull/38050
https://engineering.docker.com/2019/02/experimenting-with-rootless-docker/

“Containers do not contain”
● Originally said by Dan Walsh: docker-security-selinux

● “I have heard people say Docker containers are as secure as running
processes in separate VMs/KVM.”

● “I know people are downloading random Docker images and then launching
them on their host.”

● “I have even seen PaaS servers (not OpenShift, yet) allowing users to upload
their own images to run on a multi-tenant system.”

● “I have a co-worker who said: "Docker is about running random code
downloaded from the Internet and running it as root.”

https://opensource.com/business/14/7/docker-security-selinux

“Containers do not contain”
● Containers were not created w/security by design!
● Solaris zones were, and have great support directly from FS (see ZFS,

Crossbow)

Docker & SELinux
● Stop disabling SELinux
● “Container security: frustration in the RedHat security team was high because

of difficulties to integrate patches into the Docker product [...]” [source]
● See: Docker versus Systemd - Can't we just get along?

https://www.youtube.com/watch?v=o5snlP8Y5GY
https://www.certdepot.net/death-of-docker/
https://www.youtube.com/watch?v=93VPog3EKbs

Docker & SELinux - do you really need LSM?
Major kernel subsystems are not namespaced like:

● Cgroups
● file systems under /sys
● /proc/sys, /proc/sysrq-trigger, /proc/irq, /proc/bus

Devices are not namespaced:

● /dev/mem
● /dev/sd* file system devices

Kernel Modules are not namespaced

If you can communicate or attack one of these as a privileged process, you
can own the system.

Docker seccomp
● Kernel w/seccomp
● Docker-engine w/seccomp
● Read: https://docs.docker.com/engine/security/seccomp/

https://docs.docker.com/engine/security/seccomp/

Docker images
● Remember ““I have a co-worker who said: "Docker is about running random

code downloaded from the Internet and running it as root.”?
● Read most-popular-docker-images-each-contain-at-least-30-vulnerabilities/

https://snyk.io/blog/top-ten-most-popular-docker-images-each-contain-at-least-30-vulnerabilities/

Docker images
● Remember ““I have a co-worker who said: "Docker is about running random

code downloaded from the Internet and running it as root.”?
● Read most-popular-docker-images-each-contain-at-least-30-vulnerabilities/

https://snyk.io/blog/top-ten-most-popular-docker-images-each-contain-at-least-30-vulnerabilities/

Docker images
● Remember ““I have a co-worker who said: "Docker is about running random

code downloaded from the Internet and running it as root.”?
● Read most-popular-docker-images-each-contain-at-least-30-vulnerabilities/

[...] Alpine Linux doesn’t maintain a
security advisory program, which
means that if a system library has
vulnerabilities, Alpine Linux will not
issue an official advisory about it [...]

https://snyk.io/blog/top-ten-most-popular-docker-images-each-contain-at-least-30-vulnerabilities/

Is Alpine images secure as they say?
● Alpine Linux is a security-oriented, lightweight Linux distribution based

on musl libc and busybox.
● Top G results: Alpine so secure, very fast, best, why use anything else?
● APK - yet another packaging system

○ How much effort needs maintaining packaging system and packages?
○ https://news.ycombinator.com/item?id=17981452
○ 2 pplf for review(!): https://wiki.alpinelinux.org/wiki/Creating_an_Alpine_package#Code_review
○ “To successfully have your package pass through code reviewers (as of Feb 18, 2018

are nmeum and jirutka on GitHub) and possible increased acceptance, the following
conventions need to be followed:”

○ Looks like npm install
○ Why not rpm or deb? (because no glibc!)
○ Last year no security problems with dnf/yum/apt; those are very stable and many, many ppl

work on it; and review processes are thorough maintained by number of ppl

https://news.ycombinator.com/item?id=17981452
https://wiki.alpinelinux.org/wiki/Creating_an_Alpine_package#Code_review

Is Alpine images secure as they say?
● Alpine has Kernel patched by unofficial grsecurity
● Unofficial because grsec is no more free
● Can you really maintain Kernel patches for free? NO

https://twitter.com/grsecurity/status/936422357757022209

https://twitter.com/grsecurity/status/936422357757022209?lang=en

Alpine: musl vs glibc
● How many of you can compile w/first and the second?
● Can u rly strace w/musl?
● Operational drama
● Glibc is huge as its support & ppl behind it (G, RH, Canonical, IBM, whatever)
● Some binaries will crash in corner cases w/musl
● Read: what_is_musl_and_glibc
● Systemd will not work w/musl

https://www.reddit.com/r/linuxmasterrace/comments/41q2m9/eli5_what_is_musl_and_glibc/

Alpine: so why ppl use it?
● Because it’s small; few of MBs (6 or smt)
● “If it consists of just few libs it must be secure”
● Do you have any other ideas?

Alpine: so why ppl use it?
● Because it’s small; few of MBs (6 or smt)

○ We have currently layered FSes w/copy-on-write
○ You can really download 100mb image very fast
○ You don’t have to redownload it at all

● “If it consists of just few libs it must be secure”
○ Yeah, add more and pray that those are secure (remember they don’t have security advisory

program!)

● Do you have any other ideas?

Alpine: history
● Created w/routers, small boxes etc in mind
● Why so high adoption in Docker?

○ Because Docker hub had gigantic performance problems these times, so little Alpine fixed it
○ Because back then storage drivers (aufs /n Debians and devicemapper on RHs) sucked a lot

and layers were just too big to handle w/good performance

Which image?

Docker & systemd

"This is Lennart Poettering,"
said Walsh, showing a
picture. "This is Solomon
Hykes", showing another.
"Neither one of them is willing
to compromise much. And I
get to be in the middle
between them."

[source]

https://lwn.net/Articles/676831/

Docker & systemd

"According to Walsh's presentation,
the root cause of the conflict is that
the Docker daemon is designed to
take over a lot of the functions that
systemd also performs for Linux.
These include initialization, service
activation, security, and logging. "In
a lot of ways Docker wants to be
systemd," he claimed. "It dreams of
being systemd.""

[source]

https://lwn.net/Articles/676831/

Is there a world without Docker?
● Yeah, Podman and CRI-O
● “CRI-O owes a great deal of gratitude to the upstream Docker project.

As Isaac Newton said “If I have seen further, it is by standing on the
shoulders of giants.”

Podman - what is it?

● drop-in replacement for docker
● #nobigfatdaemons
● one process per container (supervised by init, e.g. systemd)
● systemd-cgroups: https://asciinema.org/a/182946
● user-namespaces
● rootless containers
● rootless containers in pod (k8s) share same user namespace
● support for fuse (on newer Kernels w/out root)/overlays
● systemd-features:

○ automated start
○ dependencies between specified containers and other system services (or even containers)
○ socket-activation
○ sd-notify

https://asciinema.org/a/182946

Podman - howto

● dnf/yum install -y podman
● alias docker=podman

Podman - user namespaces?
● Read podman-and-user-namespaces
● each container runs in own user namespace
● “Since the real UID=0 is not mapped into the container, any file owned by root

will be treated as owned by nobody. Even if the process inside the container
has CAP_DAC_OVERRIDE, it can't override this protection.
DAC_OVERRIDE enables root processes to read/write any file on the system,
even if the process was not owned by root or world readable or writable.”

● “Podman can use different user namespaces on the same image because of
automatic chowning built into containers/storage by a team led by Nalin
Dahyabhai. “

https://opensource.com/article/18/12/podman-and-user-namespaces

Podman - user namespaces

Docker Podman security considerations
● podman run

○ executes the process in the container as current user
○ dockerd, containerd, and runc not running as #nobigfatdaemons

● USER in Dockerfile
○ same as above
○ you can run dnf/yum/apt-get install whatever

● usermod -aG docker foo
○ No usermod as no docker.socket

Podman rootless
● Read how-does-rootless-podman-work
● Watch: replacing_docker_with_podman
● Working out-of-the-box
● “The Podman tool is enabling people to build and use containers without

sacrificing the security of the system; you can give your developers the
access they need without giving them root.”

https://opensource.com/article/19/2/how-does-rootless-podman-work
https://media.ccc.de/v/ASG2018-177-replacing_docker_with_podman#t=74

What if no Docker, no Podman - just Linux?

What if no Docker, no Podman - just Linux?

Systemd FTW!

What if no Docker, no Podman - just Linux?

Systemd FTW!
● systemd-run process confinement
● systemd portable services
● systemd-nspawn

Process confinement w/systemd-run

● See my systemd talks here
● man systemd.resource-control

○ ProtectHome=true, ProtectSystem=Strict, ReadOnlyDirectories, InAccessibleDirectoreis,
ReadWriteDirectories, PrivateTmp, TemporatyFileSystem, BindPath, BindReadOnlyPath

○ MemoryMax and others
○ CPUQuota and others
○ IPAddressDeny and others

● Read ip-accounting-and-access-lists-with-systemd
● systemd-run -p IPAddressDeny=any -p IPAddressAllow=8.8.8.8 -p

IPAddressAllow=127.0.0.0/8 -t /bin/sh

https://github.com/docent-net/conferences
http://0pointer.net/blog/ip-accounting-and-access-lists-with-systemd.html

systemd-nspawn

● Watch “systemd-nspawn is chroot on steroids” (Lennart Poettering)
● created for debugging boot process of Linux OS (by RedHat / Lennart & co)
● single process/service w/systemd as init
● quite low - level
● this was mainly for debugging init process when working on systemd
● Works perfectly
● Higher entry-level
● man systemd-nspawn

https://www.youtube.com/watch?v=s7LlUs5D9p4

systemd portable services

● Watch: portable_services_are_ready_to_use
● Read:

○ walkthrough-for-portable-services.html
○ portable services
○ dynamic-users-with-systemd.html

● normal services w/optional chroot and some containment
● multiple sandboxing options
● leave no artifacts
● Own transient user database
● Builtin ready security profiles
● This is just a wrapper around systemd (portablectl)

https://media.ccc.de/v/ASG2018-200-portable_services_are_ready_to_use
http://0pointer.net/blog/walkthrough-for-portable-services.html
https://systemd.io/PORTABLE_SERVICES.html
http://0pointer.net/blog/dynamic-users-with-systemd.html

systemd portable services - dynamic users

● Setting DynamicUser=yes implies ProtectSystem=strict and
ProtectHome=read-only and PrivateTmp=yes

● These sand-boxing options turn off write access to pretty much the whole OS
directory tree, with a few relevant exceptions, such as the API file systems
/proc, /sys and so on, as well as /tmp and /var/tmp.

● Setting DynamicUser=yes implies RemoveIPC=yes
● allocation of users cheap and ephemeral

systemd-analyze security

● analyzes the security and sandboxing settings of one or more specified
service units

● The command checks for various security-related service settings, assigning
each a numeric "exposure level" value, depending on how important a setting
is

● It then calculates an overall exposure level for the whole unit, which is an
estimation in the range 0.0…10.0 indicating how exposed a service is
security-wise

Sources, urls, ppl
● https://rootlesscontaine.rs/
● https://snyk.io/blog/top-ten-most-popular-docker-images-each-contain-at-least-30-vulnerabilities/
● https://media.ccc.de/v/ASG2018-177-replacing_docker_with_podman
● https://opensource.com/article/19/2/how-does-rootless-podman-work
● https://opensource.com/article/18/12/podman-and-user-namespaces
● https://opensource.com/article/18/10/podman-more-secure-way-run-containers
● https://www.youtube.com/watch?v=-MvKe5TFW7g
● https://www.projectatomic.io/blog/2018/02/reintroduction-podman/
● https://learning.oreilly.com/library/view/continuous-delivery-with/9781787125230/5ef77ae7-ce0c-4f85-92a6-a336bbfe8c29.xhtml
● https://www.certdepot.net/death-of-docker/
● https://opensource.com/business/14/7/docker-security-selinux

Special thanks to Dan Walsh, Lennart Poettering and Marcin Skarbek <3

https://rootlesscontaine.rs/
https://snyk.io/blog/top-ten-most-popular-docker-images-each-contain-at-least-30-vulnerabilities/
https://media.ccc.de/v/ASG2018-177-replacing_docker_with_podman
https://opensource.com/article/19/2/how-does-rootless-podman-work
https://opensource.com/article/18/12/podman-and-user-namespaces
https://opensource.com/article/18/10/podman-more-secure-way-run-containers
https://www.youtube.com/watch?v=-MvKe5TFW7g
https://www.projectatomic.io/blog/2018/02/reintroduction-podman/
https://learning.oreilly.com/library/view/continuous-delivery-with/9781787125230/5ef77ae7-ce0c-4f85-92a6-a336bbfe8c29.xhtml
https://www.certdepot.net/death-of-docker/
https://opensource.com/business/14/7/docker-security-selinux
https://twitter.com/rhatdan?lang=en
https://twitter.com/pid_eins?lang=en
https://twitter.com/marcinskarbek?lang=en

More about Linux containers

OWASP Poland, Kraków, 2019-02-28

Maciej Lasyk

Thanks!

Q&A?

We’re hiring @Codewise

Cloud Applications Security Engineer

https://codewise.com/careers/#cloud_applications_security_engineer

https://codewise.com/careers/#cloud_applications_security_engineer

